5 research outputs found

    Large eddy simulation of thermally induced oscillations in the convective boundary layer

    Get PDF
    Mesoscale circulations induced by differential boundary layer heating due to surface inhomogeneities on scales of 5 km and more can significantly change the average properties and the structure of the convective boundary layer (CBL) as well as trigger off temporal oscillations. The results of one of the first numerical case studies using large eddy simulation (LES) on the mesoscale suggest that mesoscale circulations exhibit a considerably larger average kinetic energy than convection under homogeneous conditions. This affects turbulent transport processes and should be accounted for in larger-scale models even if their turbulence parameterizations rely on homogeneous control runs of high-resolution models. This case study uses the Hannover parallelized large eddy simulation model (PALM) with prescribed 1D sinusoidal surface heat flux variations on wavelengths from 2.5 to 40 km. The resulting mesoscale circulations are analyzed by means of domain-averaged cross sections, time averaged and normalized with the boundary layer height, as well as power spectra and domain-averaged time series. The simulated mesoscale circulations were periodic. Vertical profiles and time series demonstrate that the onset of the mesoscale circulation triggers off a temporal boundary layer oscillation, whose period and amplitude depend on the surface heat flux perturbation wavelength and amplitude and on the background wind component perpendicular to the surface inhomogeneity orientation. Spectral analysis shows that the mesoscale circulations damp convection equally in all directions. A hypothesis of the oscillation mechanism is briefly discussed. Copyright 2003 American Meteorological Societ

    The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives

    Get PDF
    In this paper we present the current version of the Parallelized Large-Eddy Simulation Model (PALM) whose core has been developed at the Institute of Meteorology and Climatology at Leibniz Universität Hannover (Germany). PALM is a Fortran 95-based 5 code with some Fortran 2003 extensions and has been applied for the simulation of a variety of atmospheric and oceanic boundary layers for more than 15 years. PALM is optimized for use on massively parallel computer architectures and was recently ported to general-purpose graphics processing units. In the present paper we give a detailed description of the current version of the model and its features, such as an embedded 10 Lagrangian cloud model and the possibility to use Cartesian topography. Moreover, we discuss recent model developments and future perspectives for LES applications.DFG/RA/617/3DFG/RA/617/6DFG/RA/617/16DFG/RA/617/27-

    A large-eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon

    Get PDF
    Thermal effects on turbulent flow and dispersion in and above an idealized street canyon with a street aspect ratio of 1 are numerically investigated using the parallelized large-eddy simulation model (“PALM”). Each of upwind building wall, street bottom, and downwind building wall is heated, and passive scalars are emitted from the street bottom. When compared with the neutral (no heating) case, the heating of the upwind building wall or street bottom strengthens a primary vortex in the street canyon and the heating of the downwind building wall induces a shrunken primary vortex and a winding flow between the vortex and the downwind building wall. Heating also induces higher turbulent kinetic energy and stronger turbulent fluxes at the rooftop height. In the neutral case, turbulent eddies generated by shear instability dominate mixing at the rooftop height and appear as band-shaped perturbations in the time–space plots of turbulent momentum and scalar fluxes. In all of the heating cases, buoyancy-generated turbulent eddies as well as shear-generated turbulent eddies contribute to turbulent momentum and scalar fluxes and band-shaped or lump-shaped perturbations appear at the rooftop height. A quadrant analysis shows that at the rooftop height, in the neutral case and in the case with upwind building-wall heating, sweep events are less frequent but contribute more to turbulent momentum flux than do ejection events. By contrast, in the case with street-bottom and downwind building-wall heating, the frequency of sweep events is similar to that of ejection events and the contribution of ejection events to turbulent momentum flux is comparable to that of sweep events

    LES case study on pedestrian level ventilation in two neighbourhoods in Hong Kong

    No full text
    Hong Kong is one of the most densely built-up and populated cities in the world. An adequate air ventilation at pedestrian level would ease the thermal stress in its humid subtropical climate, but the high-density city severely reduces the natural ventilation. This case study investigates pedestrian level ventilation in two neighbourhoods in Kowloon, downtown Hong Kong using the parallelized large-eddy-simulation (LES) model PALM. The LES technique is chosen here for a city quarter scale pedestrian comfort study despite of its high computational cost. The aims of the paper are a) to get a comprehensive overview of pedestrian level ventilation and a better understanding of the ventilation processes in downtown Hong Kong, b) to test the LES technique on this urban scale compared to the wind tunnel and c) to investigate how numerical/physical parameters influence ventilation. This case study is restricted to neutral stratification in order to allow a direct comparison with the wind tunnel. A sensitivity study quantifies the dependence of site-averaged ventilation on numerical and physical parameters and determines an appropriate urban LES set-up for two 1 km2 neighbourhoods in Kowloon (Tsim Sha Tsui, Mong Kok) that are investigated for prevailing E and SW wind. The results reveal the critical dependence of ventilation on the urban morphology. Air paths, street orientations, ground coverage, sites fronting the water, inter connectivity of spaces, building podium size and building heights can all affect the pedestrian wind environment. Isolated tall buildings may have a pronounced impact on ventilation both locally and downstream
    corecore